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ABSTRACT

Stretchable anisotropic conductive films (S-ACFs) provide unidirectional electrical conduction while maintaining flexibility and

stretchability, making them promising for wearable electronics and soft interconnects. Their functionality relies on precise
alignment of conductive microparticles (MPs) and stable electrical pathways under deformation. In this study, we demonstrate
a 4-inch-scale fabrication method for S-ACF by combining hot-embossing imprinting and oscillatory rubbing-induced MPs
alignment. Large-area micro-patterned templates are fabricated by hot embossing a thermoplastic elastomer (SEBS-g-MA) near
its glass-transition temperature, enabling high-fidelity replication of micro-well arrays. Subsequently, a dry mechanical rubbing
process was applied with controlled normal pressure and oscillatory shear force to drive randomly distributed Au-MPs into the
pre-defined wells within seconds. The optimal rubbing condition-defined by the balance between sliding and rolling
forces-enabled uniform particle arrangement across the entire 4-inch area without template damage or particle loss. The resulting
S-ACFs exhibited stable conductivity and mechanical durability under repeated strain. This simple and scalable dry process
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electronic packaging.

provides a high-throughput route for precise microparticle assembly and offers a promising platform for large-area stretchable
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Fig. 2. Schematic illustration of the hot embossing process for fabricating large-area micropatterned SEBS-g-MA
templates. The process involves (a) stacking of the heating block and mold assembly, (b) pre-heating near
the glass transition temperature (7=7T,), (c) applying uniform pressure to replicate the mold features, and
(d) cooling and demolding to obtain the micropatterned surface. (e¢) Thermo-mechanical behavior of
SEBS-g-MA measured by uniaxial tensile test for various temperatures (f) Photograph of the embossed
SEBS-g-MA film over a 4-inch area. (g) Optical micrograph of the micro-patterened array with a pitch
(p) of 40 pum, diameter (d) of 20 pum, and height (h) of 20 pm.
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Fig. 3. (a) Schematic of the mechanical rubbing process showing the application of normal pressure using a
flexible elastomeric stamp on randomly distributed Au-MPs placed over the SEBS-g-MA template. (b)
Oscillatory rubbing induces particle movement through (c) rolling and sliding motions, allowing selective

anchoring of particles within the wells.
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Fig. 4. (a) Experimental setup for the mechanical
rubbing process consisting of a z-stage,
oscillator for horizontal motion, and an
elastic stamp placed above the SEBS-g-MA
template. (b) Time-dependent position and
velocity profiles of the oscillation stage.
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Fig. 5. OM images of the SEBS-g-MA template
surface before and after the mechanical
rubbing process. (a,b) Before rubbing. (c,d)
After oscillatory rubbing, Au-MPs are
uniformly arranged within the micron
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(¢) OM images of side view.
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Fig. 6. (a) Time-dependent rubbing force during the
oscillatory  mechanical rubbing process,
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S-ACF: stretchable anisotropic conductive film

SEBS-g MA: polystyrene-block-poly(ethylene-ran-
butylene)-block-polystyrene-graft-m
aleic anhydride

Au-MPs: Au microparticles
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