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ABSTRACT

Beyond being products of the genetic code, peptides are increasingly recognized as functional codes that translate molecular
information into structural, photonic, and electronic functions. Through self-assembly into o-helices, B-sheets, nanofibers, and
nanotubes, peptide-based hierarchical architectures show distinctive optical and electrical properties, including photonic bandgap
formation, circularly polarized luminescence, charge transport, ferroelectricity, and piezoelectricity. The advanced nano/microscale
manufacturing technologies, particularly three-dimensional (3D) printing, nano/micropatterning, have further expanded their
potential by enabling precise spatial control, scalable fabrication, and integration into device-level applications. These
developments highlight peptides not only as biomolecular building blocks but also as versatile functional materials with emerging
opportunities in optoelectronics, bioimaging, sensing, and energy applications. This review summarizes the photonic and
electronic properties of peptide-based materials and their nano/microscale manufacturing strategy, and discusses future prospects
arising from the effective manufacturing strategy for self-assembled peptides functional materials.
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Table 1. Types of molecular interactions, their energy ranges, and characteristics

Category Energy (kJ - mol™) Characteristics
. High directionality and selectivity:
H 1 . o
ydrogen bonding 0-40 Plays a key role in stabilizing secondary structures
. Electronic interaction between the delocalized m-electron clouds:
n- stacking 5-50 . .

Guides structures growth direction

Electrostatic inferaction 5.40 Long-range a.ttractl'on/rf:puls.mn between ?h?rged groups:
High directionality and selectivity

Hydrophobic interaction 0.5-5 Entropy-driven water exclusion effect

Van der Waals force 0.5-5 Induced by local asymmetry in electron motion
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Fig. 1. Examples of molecular interaction for self-assembly of peptides. (a—d) Example of hydrogen bonding and
hydrophobic interaction for dynamic self-assembly of peptides (a) Schematic of FFcS5FF-based nanofibrous
hydrogel enabling nitric oxide (NO) generation and encapsulation. (b) Hydrogel formation at pH 8 [6].
Reproduced from Fan et al. Nature Communications 2018. The authors retain copyright and the work is
licensed under CC BY 4.0. (c) Example of m—m stacking and electrostatic interaction. Synthesized
RGD-functionalized peptides nanoparticles via Zn** mediated co-assembly. Epirubicin (EPI) was
subsequently loaded through m—m stacking and electrostatic interactions for targeted delivery into EC cells
[32]. Reproduced from Fan et al. Nature Communications 2018. The authors retain copyright and the work
is licensed under CC BY 4.0.

Sk ol AAES] B MEH 2% 2 BH E9), T 34 A4S 34 25 pH - o2

Aol WA T8 W AW UKol ARHORE  Aw - BE - Wi AZ $E)S FA] 44 - 24

S 0|X)7] ol A7 xYe) AR AT T goms WP ofux] A 44 E, stacking
27 RS AYAE W AR AGATH). 7 0 e PREe AUsl Aeid 4 9

[2435]. BolstoRE WY WA 4= 24 <

212 XPIZES FS-SAS U ASY PE WY o mann =g somd @ sld A9 A

olF AEAE2 oA 2AY(E K - mol oA < AA 48 GAPE AYEER 3 A= e

%4 K - mol )} 716}@%4 a7adol 2y R & A0 94 - B9 G 5 Aeld 759
o, ettt *1 (9 UYL ML & Hg 20l ol A3 - 2 L A0 2

202



QUOIMFRISHER|, 20251 12€, M4 M2, pp. 199-215
Journal of Flexible & Printed Electronics, December 2025, Vol. 4, Issue 2, pp. 199-215

T %/

Hefol= A7 |2PA = B AA (oA AY,
ook A, Hoo))ot 34 M8 24, 5=, pH,
oL, £, fujud £% 5)° XFOE ID,
2D, 3D AlF #ZE 5 & AtH37]. 1D 72
A UeRE)e B4 52wt dHEEE JE
oJa)] A5} o]%9] olubA W RIS AlFslug Az}
271 2N 24 AdE FEIshe4,29,37].
2D FRMAE - g B W 5714 vidE 3R
e g4 9 2bdol ofet 24 - Fekd SHEe
@st]o] Aetstet2s].

3D YEAGRIERD) = a4 722 2 &
i B{5, 7148 454S Algste] 22538 A4
A o2 A EY AR LEHTH4] 4 $F0|

oﬁ
ol
8
)

e WS T - A5 B - Aok #x - Tdo
21-87] 5ol stacking 7+, 2zt 44 HEZ
Z7gsto] 1D of 2D A3} E1AA 2715 ettt

[35,38].

x
R Z:iﬂ) = Thermody-
namic product( eteow Pt F2A) 5 M=
OE FHY F2AE = 4 ATH36]. EIF pH -
olegmi Ak o]t Aeioh 714 AulE
SIAIA salt bridge F4 ofF L FgHAQ] QPP vt
o, 2% - 8uf ZAL LA Ao ARR9] Al
71 ol i ol A AT 4
[2736]. BA7ke] Bokn Chfeh AERRE-S o]
f5l7] QoA EANsGshMD) I 73t BEEE A
oS AP . Selned G gt
stacking 7F29] oz A F-L FAtsleto] A4 W
o 2% AFTE 70 ATkAZ S o B
#ol}{36].
2z wEE TIE 94 - A 7Heyo BV,
TEM, AFM, SAXS/WAXS)¥} E533KHFTIR, CD, UV-

A

vis) 2% A= 24 AE, S 14, 24 72 A
A3 AYA Y HEE AFste] AlEH A S
S AYRHoR HFoh=dl L& ATH24,37,39].

22. tlsd HEOIE U 2A 54

221. M35t #5 54

HEo|= A7 2 YA B AAA 724 we
g s o A o, A B4S

G 9 RS Ak B9 R ofuleAl 4
(phenylalanine, tryptophan, tyrosine 5)7} &-/d5}

—r ABAEL BA) 7 AR BB
ool 4999 o} AE AT 4 ek o]
Hol 714 ez 2= @SS o}
(hopping)°|tt FAHA] Bl'd ®(tunneling)9] & 7}HA]
oF & BEE AlSRITH28,35,40,41]. F HAYZE
A& 7]04Et B ]—71- stacking 74, FE = (Z=H|Ql
. 9 HzpHo] P Q40
o} A4EIc, wel s PO 1r 2
719) 7151514 o] B4 Aot BAf 71 7
So] 7haskn AAEH0] YRR Ho| PEas
(transfer integral)7} Z7}5to] &3 435} o x|7}
olx| 7, ugha] 2% & AV|AEEE Hi) oF
St Arthenius ASS EY 7FsAdo] otk HE=Z
stacking 7F40] 57 POVJ‘/} T24 EA&E, =1
o1 ZAAo] A5t Aste] FRsK(localization)”} 4]
steo] o] Fkr}t AA| AshEH. ol2fet A 4
A AN S HAEER ALKDFT, first
principles) F&ojA HREHOo2 HYEQow, Hat
BE} AR B4 1) A A& AEg A
S04 GEEA B QH27).

i) N
oo
rﬁ’h o rf

I

l"_>|’1_. ol O{N :‘O N

222 MES X

METE TPl R, A BAEe e

203



QUIOIKAISSX], 20251 128, HAH H23, pp. 199-215 /\\f/""
Journal of Flexible & Printed Electronics, December 2025, Vol. 4, Issue 2, pp. 199-215 oy fé\

a) b)
F6 L6
Ac - ' KETAKL " KEI AKL " HE" AKL - NH, Ac - LKELAKL LKELAKL LHELAKL - NH,
c) d)..
® Mean Current Values for F& ® Mean Current Values for F6
2 — Fitto Data T 2 — Fitto Data T
1 ---- Lower Uncertainty Bound to Fit L] 1 ---- Lower Uncertainty Bound to Fit *
—~ ---- Upper Uncertianty Bound to Fit o 1 ---- Upper Uncertianty Bound to Fit ?
= 0 0 i " ——
° T 2
5 11 # -1 #
o . :
ul |
3% T - T T -3 - T T T
-1.0 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Fig. 2. Influence of aromatic groups on electrical conductivity. (a) Amino acid sequence of peptide F6 (rich in
aromatic residues) and (b) L6 (leucine-substituted, aliphatic), with their predicted secondary structures. (c,
d) Current-voltage (IV) plots for F6 and L6, respectively, reveal that F6 generates markedly higher
current, highlighting enhanced charge transport driven by m-m stacking interactions among aromatic
residues [41]. Reproduced from Creasey et al, ACS Omega. 2019. (© American Chemical Society.
Licensed under CC BY-NC-ND 4.0.
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Fig. 3. Controlled optical and structural properties of peptide-based materials. (a, b) Bandgap modulation: (a)
Molecular structure of cyclo-peptide coordinated with Zn?>". (b) Emission spectra extracted from peptide
nanospheres [42]. Reproduced from Tao et al., Nat. Commun. 2018. Licensed under CC BY 4.0. (c, d)
Circularly polarized light (CPL) emission. (c¢) Schematic of L-type (top) and D-type (bottom) peptides.
(d) CPL spectra showing opposite handedness—D-peptide (red) and L-peptide (blue) [44]. Reproduced
from Imai and Kitamatsu, Processes 2023. Licensed under CC BY 4.0. (e) Pentapeptide design for
CPL-active structures. (f, g) Structural color and thermal response: (f) Schematics of IR-scattering
materials formed by peptide spheres (top) and SEM images of dried coating surface (bottom); (g)
Thermal imaging of a hotplate demonstrating IR modulation [48]. Reproduced from Lee, Yuan, and
Voigt, Adv. Funct. Mater. 2024. Licensed under CC BY 4.0.
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Fig. 4. Piezoelectric self-assembled peptide. (a) Calculated supramolecular crystal of peptide. The dipole moment
marks the 1.8 D vector. (b) Statistical distribution of d33eff and c¢) Point stiffness of self-assembled
peptide [52]. Reproduced from Basavalingappa et al., ACS Nano, 2020. Licensed under CC BY 4.0.
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Fig. 5. Manufacturing strategy for functional self-assembled peptide systems. (a-h) Composition-driven
enhancement: (a) SEM image of peptide—Ag nanoparticle composite. (b) IV curves comparing peptide
(black), Ag nanoparticles (red), and composite (green). (c, d) Current and open-circuit voltage output
over time during substrate bending. (e—g) Band diagrams of peptide—Ag junction under (f) no sound
and (g) sound stimulation, (h) SERS spectra of glucose showing intensity enhancement with sound
application [54]. Reproduced from Almohammed et al., ACS Materials Letters 2024. Licensed under
CC BY 4.0. (i-1) Electric field—guided polarization alignment: (i) Schematic of peptide growth under
positive and negative electric fields. (j) Cross-sectional SEM images of peptides grown under each
field. (k) PFM phase and SKPM surface potential maps of microrods from both conditions. (1)
Piezoelectric phase statistics and PFM amplitude response across electric field conditions [20].
Reproduced from Nguyen et al., Nat. Commun 2016. Licensed under CC BY 4.0. (m, n) Microfluidic
control of self-assembly: (m) Architecture of the microfluidic device (n) Visualization of peptide nanotube

formation at supercritical (3.20 mM) and critical (2.43 mM) concentrations [61]. Reproduced from Arnon
et al., Nat. Commun 2016. Licensed under CC BY 4.0.
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Fig. 6. 3D printing strategy for self-assembled peptides. (a) Schematic 111ustrat10n of the separated 3D

printing/self-assembly strategy enabling high-precision printing on demand. (b) SEM image of the
printed, self-assembled dipeptides. (c¢) (Top) Vertical piezoresponse force microscopy (PFM) images of
an as-printed FF layer under applied A.C. voltages of 0 V (left) and 10 V (right) (frequency: 15 kHz;
scale bar: 1 pm). (Bottom) Corresponding amplitude profiles. (d) (Top) Vertical PFM images of an
annealed FF layer under applied A.C. voltages of 0 V (left) and 10 V (right) (frequency: 15 kHz; scale
bar: 1 pum). (Bottom) Corresponding amplitude profiles. Adapted with permission from [18]. Copyright
2021, American Chemical Society. (e) Schematic illustration of the %RH-dependent crystallinity-
controlled 3D printing. At low 20% RH, supersaturation is insufficient for crystal growth, whereas at
high 50% RH, reduced H.O evaporation increases FF supersaturation in the meniscus, inducing
crystallization due to low solubility of FF in water. (f) Computed supersaturation ratio (o) fields inside
a meniscus at different % RH. (g) Bright-field TEM image of crystalline FF structure printed at 70%
RH (top left) and corresponding SAED image (top right). Bright-field TEM image of amorphous FF
printed at 10% RH (bottom left) and corresponding SAED image (bottom right). (g) Heterojunction
microwire consisting of amorphous (lower) and crystalline (upper) segments, and the corresponding
cross-polarized images at 6=45° and 6=90°. At 6=45°, only the crystalline upper part shows a strong
contrast. (h) Heterojunction microwire consisting of crystalline (lower) and amorphous (upper) segments,
and the corresponding cross-polarized images at 6=45° and 6=90°. At 0=45°, only the crystalline lower
portion shows a strong contrast. Adapted with permission from [62]. Copyright 2022, American
Chemical Society.
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SEM: Scanning electron microscopy
OM: Optical microscopy

POM: Polarized optical microscopy
CPL: Circularly polarized light
MOF: Metal organic frameworks
%RH: %, Relative humidity
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