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ABSTRACT

In recent years, thermoelectric generators (TEGs) have received considerable attention in energy harvesting for their ability to
convert temperature differences into electrical voltage without an external power supply. They are therefore considered promising
for harvesting waste heat and enabling self-powered electronic systems. Among various thermoelectric materials, two-dimensional
(2D) materials, known for their intrinsically high Seebeck coefficient, have emerged as strong candidates for thermoelectric
applications, although their low electrical conductivity often limits the overall power factor (PF). While previous studies have
attempted to address this issue through doping, such approaches can introduce charged impurities that act as scattering centers
and degrade carrier mobility. Instead, we employed electrochemically exfoliated (ECE) MoS,. ECE MoS; is known to contain
a higher density of sulfur vacancies generated during the exfoliation process, which can significantly enhance electrical
conductivity without additional doping. Moreover, ECE MoS, ink, followed by a solution process, can yield scalable and
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Large-area

uniform films for large-area processing. Using this approach, we fabricated a large-area ECE MoS, TEG. The device exhibited
a high Seebeck coefficient (S) of 215 uV.K™', which is comparable to previously reported mechanically exfoliated MoS, based
TEGs. This demonstrates that sulfur-vacancy-induced carrier modulation in ECE MoS, can effectively improve electrical transport
without external dopants. Overall, this work provides a scalable and efficient strategy for the fabrication of large-area 2D
thermoelectric devices and paves the way for the practical realization of high performance, self-powered electronic systems.
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Fig. 1. Schematic illustrations of the (a) ECE process and (b) ink formulation, followed by (c) device fabrication

of MoS, TEG device.
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Fig. 2. Electrical characteristics of the ECE MoS, flake FET. (a) Transfer curves of the ECE MoS, flake FET.
Optical image of the ECE MoS; flake FET (inset). (b) Output curves of the ECE MoS, flake FET.
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Fig. 3. Electrical characteristics of the ECE MoS, TEG. (a) Morphology and devices (inset) of ECE MoS, TEG.
The scale bar in inset is 2 mm. (b) Transfer curves of the ECE MoS, film TEG. (c¢) Output curves of
the ECE MoS, flake TEG.
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2D: Two dimensional

DoS: Density of state

vdW: van der Waals

S: Seebeck coefficient

TMC: Transition metal chalcogenide
CVD: Chemical vapor deposition
CNT: Carbon nanotube

rGO: Reduced graphene oxide
ECE: Electrochemical exfoliation
THAB: Tetraheptylammonium bromide
TEG: Thermoelectric generator
MIGS: Metal induced gap state
FET: Field effect transistor

PF: Power factor

TDTR: Time domain thermoreflectance
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