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ABSTRACT

optical responsivity in mechanically tunable photonic sensors.
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Soft photonic materials capable of strain-induced structural color changes offer a visual, reversible, and energy-free approach
for mechanical sensing. Here, we systematically examine how elastic modulus regulates the mechanical and optical responses
of chiral liquid crystal elastomers (CLCEs). CLCE films with distinct elastic moduli were fabricated by tuning the ratio of
reactive mesogens to thiol-acrylate crosslinkers, and their mechano-optical behaviors were analyzed through tensile testing and
real-time reflection measurements. Importantly, the force—olor sensitivity (AA/F) increased significantly with modulus, as stiffer
networks required larger forces to generate the same geometric deformation. These results demonstrate that crosslinking density
predominantly governs the force—color coupling, highlighting elastic modulus as a key material parameter for programming
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Fig. 1. Bar-coating-based fabrication procedure for
CLCEs on PET film substrates.

Table 1. Simplified CLCE precursor compositions and functions (10 g batch)

Component Function Low-Modulus Medium-Modulus High-Modulus
(9 (CLCE) (CLCEw) (CLCEg)
RM257 Mesogenic network 492 5.10 5.28
LC756 Provides chirality 0.23 0.24 0.24
EDDET Chain extender 1.18 1.01 0.90
PETMP Crosslinker 0.28 0.25 0.21
Irgacure 651 Photoinitiator 0.032 0.030 0.033
DPA Catalyst 0.017 0.015 0.013
Toluene Solvent 247 2.58 2.66
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Fig. 2. Dynamic mechanical analysis (DMA) characterization results of (a) CLCE,, (b) CLCEy and (c) CLCEy.
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Fig. 4. Mechano-optical measurement results of CLCEs. (a) Central wavelength change versus appied tensile force
and (b) wavelength shift per unit tensile force (force-strain sensitivity).
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CLCE: Chiral liquid crystal elastomer
DMA: Dynamic mechanical analysis
F: Uniaxial tensile force

&: Uniaxial tensile strain

o: Uniaxial tensile stress

Ac: Central wavelength

4 Ac: Central wavelength change
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