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This paper revisits recent advances in paper-substrate flexible and printed electronics, and we aim to present their potential as
sustainable and low-cost platforms for intelligent systems. Due to the porous and flexible structure of cellulose paper, various
electronic devices can be fabricated by printing or solution-based processes. Paper-based devices have expanding to logic circuits,
biosensors, photo-memory devices, and neuromorphic devices, showing reliable operation even under mechanical deformation.
The intrinsic wettability and biocompatibility of paper also enable disposable and eco-friendly sensor platforms. Furthermore,
integration of optical and memory functionalities has expanded paper electronics toward data storage and learning behaviors.
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This review summarizes material characteristics, device architecture, and processing strategies for paper-substrate electronics,
emphasizing their prospects for flexible and intelligent hardware systems toward next-generation paper electronics.
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Fig. 1. Optical images of the fabricated screen-printed ZnO EGTs on office paper under (a) inward and (b) outward
bending configurations. (c) Schematic of the fabrication process for office paper based ZnO EGTs and NAND
and NOR logic gates. Inset: optical micro graph of a printed ZnO EGT highlighting the source (S), drain
(D), and gate (G) regions. (d) Photograph of the flexible ZnO EGTs on office paper configured to implement
NOT, NAND, and NOR logic gates. (e) Electrical characteristics of NOT, NAND, and NOR logic gates
implemented using ZnO EGTs on an office paper substrate. (f) Electrical characteristics of the ZnO EGTs
measured to evaluate device stability under mechanical bending, including flat, inward, and outward bending
states, and after releasing the deformation. Inset: photograph of the flexible paper-based device under outward
bending. Adapted with permission from [31]. Copyright 2021, Wiley. All measurements were conducted under
identical conditions with Vpp=10 V and input levels of 2 V (‘1) and 0 V (‘0’). (g) Circuit layouts and
front/back images of the two-layer papertronic NAND and AND gates, along with their output characteristics.
(h) Schematics, layer images, and input—output responses of the NOR and OR gates. Adapted with permission
from [33]. Copyright 2024, Wiley.
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Fig. 2. (a) Experimental setup for analyzing human sweat biomarkers. (b) Optical image of the sweat sensor

system. (c) Schematic illustration of the detection principles for sweat biomarkers. (d) Color change of
glucose, lactate, uric acid, magnesium, and pH sensor according to concentrations. Adapted with
permission from [39]. Copyright 2023, Springer Nature. (¢) Measurement environment for human sweat
analysis (scale bar: 1 cm). (f) Schematic of the bi-distance measurement method and device
configuration for quantifying sweat volume and biomarker on human skin via self-inhalation. (g)
Detection principle of chloride concentration in a paper-based microfluidic channel and color distance
profiles corresponding to different chloride concentrations. (h) Detection principle of glucose concen-
tration in a paper-based microfluidic channel and color distance profiles corresponding to different
glucose concentrations. Adapted with permission from [40]. Copyright 2024, Wiley.
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Fig. 3. (a) Optical image and schematic of the paper-based photo memory (scale bar: 500 pum). Operation
principle are displayed with band diagram. Transfer curves of the photo memory device under different
mechanical conditions, including (b) the flat state (c) and the curved state. (d) Device performance
metrics according to mechanical conditions. Adapted with permission from [42]. Copyright 2024,
American Chemical Society. (e) Optical and schematic of charge trapping dielectric layer-based device
fabricated on a paper substrate. (f) Operation conditions and (g) mechanism of the memory device
driven by both optical and electrical input signals. (h) Transfer curve of photo memory device and
variation of memory window under different programming conditions. Adapted with permission from
[43]. Copyright 2025, Springer Nature.
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Fig. 4. (a) Schematic of neuromorphic device and the measurement conditions for potentiation and depression

behavior. (b) Optical image of neuromorphic device fabricated on a banknote. (c) Schematic of
neuromorphic device operation mechanism. (d) Current-time characteristics at (d) 0 V and (e)—0.05 V. (f)
Schematic of artificial neural network model architecture. Adapted with permission from [46]. Copyright
2024, Wiley. (g) Schematic illustration of structural and functional comparison between a biological
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at heterojunction interface. (i) Potentiation curve under 500 nm light pulse stimulation and (j) depression
curve under 400 nm light pulse stimulation. (k) Evaluation of face image recognition performance with
training epochs. Adapted with permission from [47]. Copyright 2024, Wiley.
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Table 1. Comparison summary of paper-based devices for various applications.

Materials Type Fabrication method Main figure of metric Ref.
. . . Logic gate: NOT, NAND,
ZnO NPs Logic device Screen printing ogle gale [31]
NOR
TIPS pentacene . . . . Logic gate: AND, NAND,
PDI Logic device Ink-jet printing OR, NOR [33]
Oxidase/Horseradish Target analytes: glucose
lit PB ' .
1m];1;/f Biosensor Drop-casting lactate, uric acid, Mg™", [39]
B cortisol
Ag,CrO . S -
g;’B ! Biosensor Ink-jet printing Target analytes: Cl, glucose [40]
Evaporation Detection wavelength:
DNTT/parylene/pNDI-SVS Photo memory Spin coating 455-660 1m [42]
Detecti length:
DNTT/parylene/pBDDA Photo memory Evaporation elee IZI; SW;‘: engt [43]
SnO, NPs/PVK Neuromorphic device Spin coating Recognition accuracy: 91.7% [46]
TiO,x NRs/pentacene/Ce Neuromorphic device Evaporation Recognition accuracy: 86% [47]

7|sAM9H

PUF: Physically unclonable function

TRNG: True random number generator
EGT: Electrolyte-gated transistor

Vro: Turn-on voltage

SS: Subthreshold swing

STP: Short-term plasticity

LTP: Long-term plasticity

PPD: Paired-pulse depression

HOMO: Highest occupied molecular orbital
LUMO: Lowest unoccupied molecular orbital
PSC: Postsynaptic current

CMOS: Complementary metal oxide semiconductor
NP: Nanoparticle

PDI: Perylene bis(dicarboximide)

BPB: Bromophenol blue

EBT: Eriochrome Black T

PB: Prussian blue

PVK: Poly(9-vinylcarbazole)
NR: Nanorod
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