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ABSTRACT

Bioelectronics has rapidly advanced in response to the growing demand for measuring and monitoring biological signals using
electronic devices. Highly stretchable electronic systems have drawn significant attention due to their strong conformal adhesion
to soft biological tissues. Hydrogels have emerged as promising materials for stretchable bioelectronic applications owing to their
tissue-like mechanical properties, high stretchability, intrinsic biocompatibility. However, conventional hydrogels face an inherent
trade-off between mechanical stretchability and electrical conductivity. To address this limitation, conductive filler-integrated hy-
drogels have been extensively developed to achieve both high stretchability and enhanced electrical performance. This review
summarizes recent progress in hydrogel nanocomposites incorporating diverse conductive nanomaterial fillers and discusses future
research directions and prospects for hydrogel-based soft conductors.
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Table 1. Summary of electrical performance and mechanical performance by type of hydrogel nanocomposite, adapted

from Refs. [16-35]

Electrical

Title Type performance Stretchability Applications Ref
Wang et al, Adv. Funct, (2024  Mietallic filler based c. 024 Sem’ 4200% Sensor [16]
hydrogel nanocomposite

Lim et al., Adv. Mater. (2024) 6. 520 Sccm'’! 300% Adhesive electrode [17]

Zhang et al,, Adv. Funct, (2024) _ - duid Metal based o. 217,895 Scm” 704%  Wearable electronics  [18]
hydrogel nanocomposite
= 0, 0,

Ma et al, Adv. Funct. (2024) ARRO ztrzasl f at 100% 6109, Soft robots [19]
Wang;ml\fna;;mgol'z;apld GF = 16 233% Wearable sensor [20]
Hao et al., Small. (2022) GF = 0.55 50% Strain sensor [21]

— 0

Hu et al, Adv. Mater. (2021) OF =26t 0900% 1 4oms Ink for wearable [22]

strain electronics

Wei et al, Adv. Funct. (2022) 6. 2.12x10° Srem™ - Sensor [23]

Han et al, Adv. Funct. (2024) i‘;‘;;:ﬁ;fi GF = 104 ; TENGs [24]

Lei et al, Nat. Commun. (2019) - 10,000% Soft robots [25]
= 0,

Jiang et al., Adv. Funct. (2025) CF O'SSZ;; 0-320% 1,000% Pressure sensor [26]

Han et al., Adv. Mater. (2023) 6. 49x10° S-em™ - Bioelectronics [27]
Ji et al, Adv. Sci. (2024) 6. 1.216x10? S-cm 1,100% ECG device [28]

Yao et al., Adv. Funct. (2022) 6. 6.94x10° S-em™ 1,810% Sensor [29]

Conductive polymer
Tropp et al., Adv. Mater. (2024) based hydrogel c. 410 Sem’ - Bioelectronics [30]
nanocomposite

Lu et al, Nat. Commun. (2019) 6. 40 Sem’! >35% Bioelectronics [31]

Feig et al., Nat. Commun. (2018) 6. 023 Scm’! >100% Electronic material [32]

He et al, Nat. Commun. (2023) c. 80 Sem”! 36% mplantable 33]
bioelectronics

Xie et al, Nat. Commun, (2023) 6. 3.01 Sem” 1,000% Implantable [34]
bioelectronics

Zhou et al., Nat. Mater. (2023) 6. 11 Sem’ 400% Bioelectronics [35]
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Fig. 1. Metallic-filler based nanocomposite hydrogels.
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(a) Schematic illustration of stretch-induced triple

orientation in the PAL hydrogels. Adapted with permission from [16]. Copyright 2024, Wiley-VCH
GmbH. (b) Resistance changes as a function of tensile strain for PVA, PAL-1, PAL-2, and PAL-3
hydrogels. (c) Schematic illustration of wAu-CSH. Adapted with permission from [17]. Copyright 2024,
Wiley-VCH GmbH. (d) Resistance changes as a function of tensile strain for wAu-PAAm CSH,

AgNW-PAAm CSH, and AuNS-PAAm CSH.
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Fig. 2. LM-based nanocomposite hydrogels. (a) Schematic illustration of PVA-LM-FT hydrogel network. Adapted
with permission from [18]. Copyright 2024, Wiley-VCH GmbH. (b) The resistance response of
organohydrogel under cyclic stretching for 1,000 cycles. (c) Schematic illustration of LM@A-Mxene
integrated PNIPAm hydrogels. Adapted with permission from [19]. Copyright 2024, Wiley-VCH GmbH.
(d) Relative resistance variation of the conductive hydrogel. (¢) SEM image in the cross section and
schematic illustration of the CHACC-LM-0.6 hydrogel. Adapted with permission from [20]. Copyright
2022, Wiley-VCH GmbH. (f) Resistance change of CHACC-LM-0.6 hydrogel. (g) Illustration of
integrated hydrogel-soft electronics. Adapted with permission from [21]. Copyright 2022, Wiley-VCH
GmbH. (h) Relative resistance change of the strain sensor. (i) Illustration of the fabrication of P-LMGO
hydrogel with LMGO nanocomposite fillers. Adapted with permission from [22]. Copyright 2021,
Wiley-VCH GmbH. (j) A graph showing performances of P-LMGO-2-based sensors. (k) Illustration of
the fabrication process of C-EP (Cellulose nanocrystals and EGaln/PANI complex). Adapted with
permission from [23]. Copyright 2022, Wiley-VCH GmbH. (I) Resistance and conductivity of PM/C-E
and PM/C-EP-1 hydrogel.
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Schematic composition of SG hydrogel(poly (SBVI)-graphene hydrogel). Adapted with permission from
[27]. Copyright 2023, Wiley-VCH GmbH. (h) Conductivity of SG hydrogel, PEDOT:PSS/agarose
hydrogel, and PEDOT:PSS/alginate hydrogel over a period of 14 d in water. (i) Schematic illustration of
ULAS(ureido backbone, betaine sulfonate methacrylate, and acrylamide) hydrogel. Adapted with
permission from [28]. Copyright 2024, Wiley-VCH GmbH. (j) A diagram showing ionic conductivity of
the hydrogels in different conditions. (k) Schematic preparation of fabricating PAM/PBA-IL/CNF
hydrogel. Adapted with permission from [29]. Copyright 2022, Wiley-VCH GmbH. (I) Conductivity of
PAM/PBA-IL/CNF with varying PBA-IL content at 25°C.
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Fig. 4. Conducting Polymer-based nanocomposite hydrogels. (a) Schematic illustration of the conversion of
PEDOT:PSS into acid-crystallized, dispersible nanoparticles (ncrys-PEDOT,) via nonsolvent-induced phase
separation (NIPS). Adapted with permission from [30]. Copyright 2024, Wiley-VCH GmbH. (b) Comparison
of the electrical conductivity of ncrys-PEDOTx with other reported conjugated polymer (CP) nanoparticles.
(c) Schematic illustration of the dry-annealing processes of PEDOT:PSS with DMSP as the additive.
Adapted with permission from [31]. Copyright 2019, Springer Nature. (d) Comparison of the electrical
conductivity of pure PEDOT:PSS hydrogels both in deionized water and in PBS with varying DMSO
concentrations. (e) Schematic illustration of the process for fabricating C-IPN hydrogels. Adapted with
permission from [32]. Copyright 2023, Springer Nature. (f) Resistance normalized to the initial resistance
of a C-IPN 2 gel under cyclic tensile strain between 0% and 100% for 10 cycles. (g) Schematic
illustration of the synthesis of percolated polypyrrole (PPy) network guided by the nanofiber template.
Adapted with permission from [33]. Copyright 2023, Springer Nature. (h) Resistance changes as a function
of tensile strain for conductive nanofiber hydrogels (CNHs) with various PPy content. (i) Schematic
illustration of the 3D printing of PEDOT:PSS-based aqueous threads in an oil. Adapted with permission
from [34]. Copyright 2023, Springer Nature. (j) Resistance normalized to the initial resistance of a
dry-annealed gel (ink 5*%) under cyclic tensile strain between 0% and 50% for 30 cycles. (k) Images of
the fully swollen bi-continuous conducting polymer hydrogel (BC-CPH) with 25w/w% PEDOT:PSS at
engineering strain of 200%. Adapted with permission from [35]. Copyright 2018, Springer Nature. (1)
Resistance normalized to the resistance of non-deformed state (R/RO, left axis) and conductivity (right
axis) changes as a function of tensile strain for BC-CPH.
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