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ABSTRACT

Indium tin oxide (ITO), the conventional material used for transparent conductive electrodes (TCEs), has several drawbacks. These
include its high cost, brittleness and the need for high-temperature, vacuum-based processing. This has driven the search for
alternative materials that are suitable for cost-effective, large-area and low-temperature solution processing, particularly for flexible
electronics. One-dimensional (1D) nanomaterials, such as metallic nanowires (Ag, Cu and Au) and carbon nanotubes (CNTs),
have emerged as promising candidates thanks to their excellent electrical conductivity, high transparency and superior mechanical
flexibility. This review explores the overall research trend of nanowire-based TCEs fabricated through solution processes. Various
random network printing methods (spin coating, spray coating and inkjet printing) and oriented network fabrication techniques
(Langmuir-Blodgett, templating and brushing) are investigated for their ability to enhance the electrical and optical properties of
the resulting transparent electrodes. Advancements in material stability, network uniformity and scalability are expected to play
a significant role in the production of next-generation flexible electronic devices for commercial use.
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Fig. 1. (a) Nano-welding method using HCI vapor [33]. Copyright 2017 American Chemical Society. (b) Nano-
welding method via UV irradiation [34]. Copyright 2022 MDPI.
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Table 1. Advantages and disadvantages of each random
network printing process and their electrical
and optical properties
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Fig. 3. (a) Silver nanowire mesh formed using the
coffee-ring effect [50], Copyright 2018
WILEY-VCH Verlag GmbH & Co. KGaA.
(b) Grid-patterned nanowire network fabri-
cated using a template [51]. Copyright 2019
Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim. (c) Silver nanowire network formed

by brushing [52]. Copyright 2020 Chinese
Chemical Society.
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Table 2. Advantages and disadvantages of each oriented
network printing process and their electrical
and optical properties
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TCE: Transparent conductive electrode
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ITO: Indium tin oxide

LSPR: Localized surface plasmon resonance

CNT: Carbon nanotube

FOM: Figure of merit

NW: Nanowire

SWCNT/MWCNT: Single wall/Multi wall carbon

nanotube
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