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ABSTRACT

Wearable and implantable soft electronics are emerging as key platforms for next-generation healthcare, enabling continuous
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electronic platforms.

Wireless power transfer systems

physiological monitoring, targeted diagnosis, and therapy. However, the widespread adoption of these systems is fundamentally
limited by the reliance on rigid batteries and wired power sources, which induce mechanical mismatch, user discomfort, immune
responses, and the need for repeated surgical interventions. To overcome these difficulties, substantial progress has been made
in developing power management technologies tailored for soft bioelectronics. This paper reviews recent advances in three major
categories of power management technologies for soft electronics, including soft batteries, self-powered systems, and wireless
power transfer systems, with an emphasis on their potential to enable long-term, real-time, closed-loop wearable and implantable
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Fig. 1. (a) Schematic illustration of a stretchable wavy battery. (b) Illustration of a kirigami pattern. (c) Schematic
illustration of an LM-based all-solid-state stretchable battery. (d) Schematic illustration of a manufacturing
process of a stretchable hydrogel battery through interfacial dry crosslinking. (a) Reproduced with permission
from Advanced Energy Materials [1]. Copyright 2017, Wiley-VCH. (b) Adapted under the terms of the
CC-BY4.0 [2]. Copyright 2015, Springer Nature. (c) Adapted under the terms of the CC-BY-NC-4.0 [3].

Copyright 2024, Wiley-VCH. (d) Reproduced with permission from Advanced Materials [4]. Copyright 2021,
Wiley-VCH.
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2.2.1. T X|(Photovoltaic Cells)
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Fig. 2.

¥ Morphology change in active layer

(a) Optical microscope (OM) images of stretchable GaAs photovoltaic devices in their original state (top) and

20% biaxial strain (bottom). (b) Schematic illustration of stretchable OPV. (c) Normalized parameters during
4000 bending cycles (bending radius of 0.5 mm). (d) Schematic illustration of an intrinsically stretchable
OPV, and the stretchability of ETL is material-dependent. (e) Schematic illustrations of stress dissipation of
stretchable ETL while stretching. (a) Reproduced with permission from Advanced Materials [6]. Copyright
2011, Wiley-VCH. (b, c) Adapted under the terms of the CC-BY-4.0 [7]. Copyright 2021, Springer Nature.
(d, e) Adapted under the terms of the CC-BY-NC-4.0 [8]. Copyright 2025, Wiley-VCH.
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22.2. HtO| 2 A Z T X| (Biofuel Cells)
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Fig. 3. (a) Schematic illustrations of the manufacturing process and the structure of a BFC fiber. (b) Images of the
stretchable BFC under stretching and bending. (c) Schematic illustration of direct electron transfer between
CNT-COOH and GOx. (d) Stability of BFC under bending, stretching, and twisting. (a) Reproduced with
permission from Nano Letters [10]. Copyright 2018, American Chemical Society. (b) Reproduced with
permission from Advanced Functional Materials [11]. Copyright 2019, Wiley-VCH. (c, d) Reproduced with
permission from Advanced Functional Materials [12]. Copyright 2023, Wiley-VCH.
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Fig. 5. (a) Stress-strain curve of PVDF, PVDF-PU, and PU fibers. (b) Schematic illustration of a stretchable TENG, OM
images of dot-distributed and serpentine patterned electrodes, and photographs of the stretchable TENG. (c)
Photographs of LM-based stretchable TENG under various deformations. (a) Reproduced with permission from
ACS Applied Polymer Materials [17]. Copyright 2022, American Chemical Society. (b) Reproduced with
permission from Advanced Electronic Materials [18]. Copyright 2019, Wiley-VCH. (c) Adapted under the terms of

the CC-BY~4.0 [19]. Copyright 2024, Wiley-VCH.
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Table 1. Output performance reported for self-powered

systems
Device type Output performance Refs.
PV Vo 091 V, L2 88 pA [6]
OPV 156 mW [9]
OPV Vo 0.83 V, J: 25.0m Acm> 7
OPV 0.35 mW [8]
BFC 4 pW em? [10]
520 pW em?
BEC 450 uW (mountled on human arm) [
57 uW em™
BFC 3.6 pW cm™ (implanted in rat’s [12]
dorsum)
TEG 026 pW em? K? [13]
TEG 148 uW cm? K [14]
040 mW cm?
TEG (at 20°C temperature difference) [16]
OTEG 0.32 nW cm? K? [15]
PENG 14 pW cm? (at 107 Q) [20]
PENG 0.48 pW cm’? [17]
PENG 90 mV (at 100 MQ) [21]
TENG 604 V [18]
TENG 7.55 pW em™ (at 90 MQ) [19]
a
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HUE NEsithFig. 6()[22] A5 d2 Z=dd
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Fig. 6. (a) Stretchable liquid metal antenna. (b) Images of stretchable LM litz wire coil. (c) Wireless power transfer
efficiency vs. biaxial strain. (a) Reproduced with permission from Advanced Materials [22]. Copyright 2021,
Wiley-VCH. (b, c¢) Reproduced with permission from Advanced Materials Technologies [23]. Copyright 2024,
Wiley-VCH.
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Table 2. Comparison of power management technologies for wearable and implantable applications

Device type Applicability Rationale
High energy density and stable output.
Battery Wearable Repeated surgical interventions required for battery replacement.
Limited long-term safety due to electrolyte leakage.
g Ve 1 7 ol e i i,
BFC Wearable & Implantable Continuous power generation from body fluids.
Continuous power generation from the temperature gradient between the body and the
TEG Wearable environment.
Low power density due to limited temperature gradient when implanted.
PENG Wearable & Implantable f(())zf; Sz:lli‘:lt;zzﬁt;rim mechanical stimuli, such as heartbeat, breathing, and muscle
TENG Wearable & Implantable High output voltage through contact electrification and electrostatic induction.
WPT Wearable & Implantable Long-term, battery-free wireless power transfer.

oF|HA7} 53t ticte] & AoE AgHh dE
S0l AAY AAL} FRE FEct] At AP
A2}, 148 A A E gidohs - viEE], 1
I Gk oA HEF3Z 915k R T4 HE S
AAEE SRRte =X, HiE e WA glo] A7zt A
A As 43 =7t 7hee A AP closed-
loop AAF717] &0 7kssid Zoltt. ol#gt 5%
A A I A A1 94 34 71 7ol HaHE
O, 2 HlofeiE 2 A ANE HA1719] A
4 A8 9 HQl gEEE dAAlo] ZEOR FHo|
HL 7i&shE AoR 7|

7MY

LIB: Lithium-ion battery

PDMS: Polydimethylsiloxane

LM: Liquid metal

MWCNT: Multi-walled carbon nanotube
TPU: Thermoplastic polyurethane

OM: Optical microscope

PCE: Power conversion efficiency

OPV: Organic photovoltaics

PC71BM: [6,6]-phenyl C71-butyric acid methyl ester

HTL: Hole transport layer

ETL: Electron transport layer

AgNW: Ag nanowire

C-PVA: Cross-linked polyvinyl alcohol

PFN: Polyfluorene

BFC: Biofuel cell

BP: Buckypaper

BOx: Bilirubin oxidase

LOx: Lactate oxidase

OCV: Open circuit voltage

GOx: Glucose oxidase

EDC: 1-3-dimethylaminopropyl-3-ethyl carbon diimide
hydrochloride

NHS: N-hydroxysuccinimide

DET: Direct electron transfer

TEG: Thermoelectric generator

SEM: Scanning electron microscope

EDS: Energy dispersive spectroscopy

TE leg: Thermoelectric leg
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SIS: Styrene-isoprene block copolymers

OTEG: Organic thermoelectric generator

PMIC: Power management integrated circuit

PENG: Piezoelectric nanogenerator

PVDF-TrFE: Poly(vinylidene fluoride-co-trifluoroe-
thylene)

PVDF: Poly(vinylidene fluoride)

PU: Polyurethane

PEDOT:PSS: Poly(3,4-ethylenedioxythiophene) poly
(styrene sulfonate)

WPT: Wireless power transfer system

NFC: near-field-communication

RF: Radio-frequency

DEE: Dielectro-elastic elastomer
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