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1. INTRODUCTION

In the past decades, advance in the field of nano-
photonics is enough to provoke the onset of the analy-
sis of optical thin films; they are adopted in many op-

tical devices. By investigating numerous optical prop-
erties of nanophotonic structures, obtained responses 
facilitate an extended realm of applications: Electrodes 
in a lithium-ion battery [1], solar control coating [2], 
optically switchable thin films [3-5], optical filters [6], 
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and Bragg reflectors [7-9]. Especially, thin films con-
tribute to most fields, from nanophotonics, material 
science, and even biomedical disciplines [10,11].

Along with the drastic growth of computer science, 
exceptional computational algorithms are proposed, 
simply solving the Maxwell equations repetitively. 
This concept, however, turned out to be computation-
ally expensive and lacks efficiency in that electro-
magnetic simulation entails a numerous number of cal-
culations: Rigorous coupled-wave analysis (RCWA) 
[12,13], finite difference time domain (FDTD) [14], fi-
nite element method (FEM) [15], transfer-matrix meth-
od (TMM) [16], and scattering- matrix method (SMM) 
[17,18].

Besides the conventional methods, deep learning 
(DL) has contrived to take account of its high-through-
put nature [19]. This unprecedented approach can ef-
fectively handle a sizeable amount of data with ease. 
Since a deep neural network (DNN) learns the general-
ized pattern of the given data set, the quality and size 
of the set is a pivotal concern. Considering its promis-
ing prediction capability, which is trained using back-
propagation and non-linear activation functions [20] to 
address the “black-box” method, DNN derives a gener-
alized function to approximate the pattern, which im-
plies a relationship between input and output of the 
data set. In this manner, the model simply mimics 
Maxwell's equations, not by intuitively knowing the 
mathematical computation process, but by the accumu-
lated sense acquired through training. As a one-off 
cost process, the results can be promptly retrieved 
once the model is trained.

The promising characteristic of DL empowers al-
most every field to implement the state-of-the-art algo-

rithm over outdated ones: Image analysis in medical 
fields [21], DL-based inspection systems for the smart 
factory [22], and so on. To keep up with the move, we 
propose and implement a basic structure of DNN to 
derive optical spectral responses of multilayered opti-
cal thin films. In this work, we exploit several adjust-
able features to carry out an analysis and comparison 
of the performance of the model. By juxtaposing the 
tendency of the cost function, which is mean squared 
error (MSE), it is expected that each variable is opti-
mized: 1) number of layers, 2) model architecture, 3) 
size of data set, and 4) train, test, validation split ratio.

Notably, under several settings, the model ex-
cellently approximates the target response. The affec-
tion of each variable is closely examined through the 
comparison of reflectance spectra with different con-
ditions. According to the simulations, the DNN with 
five input variables consisting of the four hidden lay-
ers with 512-256-256-128 neurons is the most efficient 
trial among others, while MSE is lowest when the net-
work is fed with the data set of 150,000 unique de-
signs separated into train, test, validation with the ratio 
of 6:2:2. Although the distinguished setting can be var-
ied as target changes, any other problems can be re-
solved by tuning the suggested variables.

2. MODELS AND METHODS

2.1. Preparation of Training Data Set

Basically, multilayered optical thin films hold three 
associated features manifesting the optical properties 
of the design: Reflectance (R), transmittance (T), and 
absorptance (A). The conservation of energy governs 
how reflectance, transmittance, and absorptance are in-
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terrelated, i.e.,
 
R+T+A=1 (1)

 
In this study, we have accumulated training data set 

using algorithm which employed RCWA method. The 
data gathering algorithm initializes the multilayered 
thin films with the number of layers ranging from two 
to five are composed of alternating layers of titanium 
dioxide (TiO2) and silicon dioxide (SiO2), which are 
considered as a sample structure for the study. The 
thickness of each layer is selected randomly in the 
range of [10, 300] nm, with a 10 nm interval. Also, 
a total of 101 equally spaced discrete points of the re-
fractive index of TiO2 and SiO2 have sampled in the 
range of [400, 700] nm. This sample rate is enough to 
meticulously detect the whole spectrum. Given that the 
suggesting materials are lossless, which means no ab-
sorption (A=0) takes place as the light goes through 
the material, we calculate only the reflectance of the 
films; transmittance can be omitted owing to the Eqn. 
1 (T=1−R).

In the data preparation phase, the size of training 
data sets varies from 1,000 to 500,000 taking account 
of the attributes of each variable (i.e., 1,000 for two 
layers, 500,000 for five layers). To derive the re-
flectance spectrum from the suggested design, we opt-
ed for RCWA due to its high reliability and fast calcu-
lation [23].

2.2. Tuning of the DNN

In this work, the primary concern is to approximate 
the Maxwell equations using DNN, so that the trained 
model can immediately predict the optical spectral 
response of the suggested design without carefully ex-

amining it. Thus, we employed the general DNN with 
several tunable features, which allow us to figure out 
the optimal conditions for training. The suggested 
DNN receives the thickness of each layer as an input 
while predicting the reflectance as a learning output. 
The underlying concept is based on polynomial re-
gression due to the curvilinear profile of the spectrum. 
The developed network involves a loss function, acti-
vation function, and optimizer, which are integral to 
training. Without any change, the elemental level of 
DNN is fed with 200,000 data separated into training, 
test, and validation with a ratio of 8:1:1, respectively. 
Besides, the rectified linear unit (ReLU) [24] is em-
ployed as an activation function, while adam opti-
mizer, which spontaneously updates the learning rate, 
is chosen for its distinguished performance [25]. In the 
training session, we adopted MSE as a cost function 
and trained for 200 iterations. The threshold of MSE 
is defined, referring to the MSE between two reliable 
simulators using an electro-magnetic concept. The 
DNN is trained with the training set, and then the vali-
dation set is applied to conduct cross-validation for ev-
ery epoch. The final model, in turn, implies the mini-
mum value of validation loss, so it can be verified us-
ing the test set.

With the general DNN, we now allow several varia-
tions to the model for a deliberate analysis of each 
factor; how the result would be changed as a pivotal 
parameter varies. Typically, factors that are likely to 
have a meaningful impact on performance are selected 
as tunable features.

The number of layers varies from two to five, while 
the amount of data for each step also varies 
proportionally. For the structure of DNN starts with 
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simple architecture, then proceeds to a relatively deep 
network. The size of the data set increases gradually 
from 25,000 to 150,000. Additionally, for the train, 
test, validation split ratio, the proportion of the train 
set decreases, while that of the test and validation set 
increases at an identical rate.

3. RESULTS AND DISCUSSION

3.1. Number of Layers

Increasing the number of layers does not merely add 
more complexity to the design, but the number of 
combinations (i.e., 302 for two layers, 303 for three 
layers, considering the potential candidates of a thick-
ness of each layer). Thus, MSE shows an upward 
trend as the number of layers increases. In Fig. 1, the 
MSE, which implies the average discrepancy between 
target and predicted response throughout the whole 
samples, is relatively low at which the number of lay-
ers is lower than five. However, as the number of 
combinations soars from the five layers, it is quite 
challenging for the network to reduce the loss to the 

extent of previous models.
The number of designs in the data set varies since 

the possible number of combinations is different. The 
number of structures in each model is 1,000, 30,000, 
200,000, and 500,000, respectively. On account of the 
number of designs varies for each model, the learning 
curves in Fig. 2 show that the MSE of all four net-
works converges as the number of training epochs 
increases.

The inclination of MSE in Fig. 1 implies that the 
performance of predicting the spectral response tends 
to cause degradation. As expected, spectrums in Fig. 3 
come up with similar results; first to third networks 
approximate the target response very clearly, while the 
last model manifests noticeable errors between the two 
spectra. Through the first analysis, we found that the 
number of layers more than five might provoke mean-
ingful errors if other features remain the same.

Fig. 1. Train and test loss with varying the number of 
layers.

Fig. 2. Learning curves of the DNN, which show the 
MSE as a function of the number of training 
epochs, of training set, and validation set for (a) 
two layers, (b) three layers, (c) four layers, (d) 
five layers.
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3.2. Model Architecture

The number of neurons in each hidden layer defines 
how deep and complicated the network is. Specifically, 
total parameters play a pivotal role in evaluating the 
performance of the model. As the number of layers 
and neurons increases, more and more parameters con-
tribute to figuring out a sophisticated function, which 
can approximate the delicate features. A trained net-
work with a larger MSE value tends to suggest a 
rough profile because simple architecture cannot reach 
the point at which a deeper network can attain.

Table 1 displays the detailed information of each ar-
chitecture and RMSE value. The change in RMSE 

seems to be marginal, but even a minute difference be-
tween the networks can yield a magnified error in the 
model evaluation session.

Fig. 4 shows the learning curves of four different 
architectures. It is clear that the simplest one has the 
most gradual change in MSE throughout the 200 train-
ing iterations, while others express a drastic fall in 
MSE. All things considered, although there is an addi-
tional layer with 1,024 neurons in architecture 4, MSE 
changed infinitesimally. Accordingly, Fig. 5 corrobo-
rates the assumption that the performance and com-
plexity of the network are dependent to a certain 
extent. Gradual increase in prediction level tends to 
converge as the total number of parameters of the net-

Fig. 3. Target and predicted reflectance spectra with 
different layer numbers; (a) two layers, (b) 
three layers, (c) four layers, (d) five layers.

Table 1. Detailed structure and the RMSE of the systems

The number of neurons in hidden layers RMSE

Architecture 1 5 – 256 – 128 – 101 0.1028

Architecture 2 5 – 512 – 256 – 128 – 101 0.0661

Architecture 3 5 – 512 – 256 – 256 – 128 – 101 0.0414

Architecture 4 5 – 1024 – 512 – 256 – 256 – 128 – 101 0.0422

Fig. 4. Learning curves of the DNN, with different 
depth and size of hidden layers.
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work exceeds a certain number.

3.3. Size of Data Set

Basically, DL requires a large amount of data set to 
figure out the internal pattern and relationships. 
However, if it is too much, it can result in a huge 
waste of time in data preparation and training proc-
esses with marginal benefit obtained. Thus, it is essen-
tial to stay within an affordable range.

As shown in Fig. 6, a downward trend of MSE sup-
posedly indicates the larger data set gives birth to a 
discriminating model. However, this can be con-
troversial, taking into account the one-time cost prop-
erty of DL. Of course, a larger data set contributes to 
the better performance of the network. Nevertheless, 
from the point at which the MSE starts converging, 
there are no more benefits from aggrandizing the size 
of the data set.

Learning curves in Fig. 7 have a similar profile 

compared to each other. Although the number of 
unique structures is almost tripled. Even if the size of 
the data set matters the most, it becomes a mean-
ingless factor, as it becomes too large to train with. 
Although Fig. 8 shows an appreciable change in ap-
proximation performance, a sizeable data set cannot be 
regarded as only the right path. For the forward pre-
diction of five layers, all other conditions being con-

Fig. 5. Target and predicted reflectance spectra with 
different depth and size of hidden layers; (a) 
architecture 1, (b) architecture 2, (c) archite-
cture 3, (d) architecture 4.

Fig. 6. Train and test loss with varying data size.

Fig. 7. Learning curves of the DNN, which show the 
MSE as a function of the number of training 
epochs of the training set, and validation set 
for total data set size of (a) 25,000, (b) 50,000, 
(c) 100,000, (d) 150,000.
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sidered the same, approximately 200,000 unique de-
signs can derive the internal pattern of the given data 
set.

3.4. Train, Test, Validation Split Ratio

Separation of the given data set into several clusters 
contributes to enhanced performance as well as 
reliability. Solely placing the training set for the DL 
can result in over-fitting, which indicates that the 
trained network can predict outputs from inputs that 
have been used in the previous training session. The 
trained model cannot proceed with the totally un-
familiar data set. To handle the issue, a validation set 
is employed to prevent the over-fitting problem. 
Further, to get refined results while training, a test set 
is also implemented to evaluate the final model. 
Despite the fact that the adoption of the test and vali-
dation set is promising, the optimal ratio of each data 
set is not defined yet. It varies from case to case. 

Thus, now we take a look at Fig. 9, which describes 
the learning curves of four difference ratio models. 
Even though we noticeably changed the ratio of each 
data set, there seems to be no difference between 
them. Similarly, Fig. 10 with four different predictions 
shows that the model performs the best when the ratio 
of train, test, and validation is 6:2:2.

Likewise, the other factors can also be the govern-
ing ones, as the fields and applications vary. Consider-
ing the underlying characteristics of DL, optimal con-
ditions for one project can have a poor performance on 
the other one. The impact and influence of variables 
are closely examined by juxtaposing reflectance spec-
tra with different initial conditions. According to the 
simulations, the DNN with five input variables com-
posed of the four hidden layers with 512-256-256-128 
neurons shows the minimum MSE when the network 
is fed with the data set of 150,000 unique designs sep-

Fig. 8. Target and predicted reflectance spectra for dif-
ferent data set size of (a) 25,000, (b) 50,000, 
(c) 100,000, (d) 150,000.

Fig. 9. Learning curves of the DNN, which show the 
MSE as a function of the number of training 
epochs, of training set, and validation set for 
train, test, validation set split ratio of (a) 8:1:1, 
(b) 7:1.5:1.5, (c) 6:2:2, (d) 5:2.5:2.5.
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arated into the train, test, validation with the ratio of 
6:2:2.

4. CONCLUSION

In conclusion, we have implemented general DNN 
to predict the spectral response of multilayered optical 
thin films in lieu of the conventional Maxwell 
equations. Considering the underlying properties of 
DL, a rapid calculation based on the pattern identi-
fication of the given data set eventually encourages 
DL to substitute for the existing genetic algorithms. In 
this work, we first tried to demonstrate the validity of 
DL as an optimization tool. By suggesting several piv-
otal variables—1) number of layers, 2) model archi-
tecture, 3) size of data set, and 4) train, test, validation 
split ratio-to be tuned, it is possible to identify the op-
timal condition for the specific parameter. The MSE 
tends to soar as the number of layers stacked more 
than five. Also, using a convergence theory, the opti-

mal network is established, which consists of four hid-
den layers with 512-256-256-128 neurons in each 
layer. Further, a total of 150,000 unique sets of de-
signs are fed to the established network, separated into 
train, test, and validation sets with a ratio of 6:2:2, 
respectively. Since the presented conditions are con-
fined to fixed circumstances, we expect to conduct fur-
ther research to relieve the constraints for further de-
velopment of the fields of nanophotonics.

ABBREVIATIONS

RCWA: Rigorous coupled-wave analysis
FDTD: Finite difference time domain
FEM: Finite element method
TMM: Transfer-matrix method
SMM: Scattering-matrix method
DL: Deep learning
DNN: Deep neural network
MSE: Mean squared error
ReLU: Rectified linear unit
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